Release Note

Release Date: July, 2018

Product Ver. : Gen 2019 (v1.1) and Design + 2019 (v1.1)

DESIGN OF General Structures

Integrated Design System for Building and General Structures

Index

• midas Gen

	(1) 桶件設計 (歐規NIC 2018)	4
	(2) 優化材料非線性分析的後處理程序	6
	(3) 建模精靈自動建立電塔模型	8
	(4) 優化歷時分析的後處理程序	9
	(5) 優化扭轉不規則性檢核表格	10
	(6) 自動計算不規則結構物的折減係數 (哥倫比亞規範NSR-10)	11
	(7) 定義面載重群組	12
	(8) 定義風壓計算方程式	13
	(9) 優化黏彈性阻尼器設定	14
	(10) 新增地震能量消散圖	17
	(11) 多線性彈簧性質與GTS NX的轉換介面	21
	(12) 優化多線性彈簧設定	22
	(13) 側推分析可考慮非線性彈性連接	23
	(14) Tekla Structure 2018 轉換介面	24
	(15) 新增鋼筋性質資料庫 (SS560 : 2010)	25
••• -		
 midas Des 	sign+	
	(1) SRC柱設計 (AISC-LRFD 10M)	27
	(2) CFT柱設計 (AISC-LRFD 10M)	28
	(3) 使用碳纖/玻纖進行構件補強	29
	(4) 鋁構材之梁/柱設計 (ADM)	30
	(5) 優化基座板設計之肋板配置	31

1. 構件設計 (歐規NTC 2018)

Reference in NTC 2018	Details
-	Add Material of NTC2018 in DShop
-	Add Material of NTC2018 in GSD
7.4.6.2.2	[Column] Modify the calculation of 'Volume of concrete core' in Check mechanical volumetric ratio of co nfining hoops within the critical regions.
	[Wall End] Modify the calculation of mechanical volumetric ratio within the critical regions.
7.4.4.5.1	 Shear strength in wall elements under seismic combination is reduced by a 0.4 factor. Design shear force of wall elements use the shear force from analysis without any modifica tion in CD "B".
7.4.6.2.2	Minimum mechanical volumetric ratio is considered as 0.12 only for CD"A" in column and wall.
7.4.4.5.2.2	In wall element for seismic and non-seismic case, wall length for shear design is calculated by ' d=0.9Lw' and 'z= 0.8Lw'

1. 構件設計 (歐規NTC 2018)

Detail Report for Punching Shear Checking as per 6.4.4 and 6.4.5 of EN1992-1-1 •

as per EN 1992-1-1:2005/A1:2014 "(1) Where shear reinforcement is required it should be calculated in accordance with Expression (6.52): $v_{\text{Rd,cs}} = 0.75 v_{\text{Rd,c}} + 1.5 (d / s_r) A_{\text{sw}} f_{\text{ywd,ef}} [1 / (u_1 d)] \sin d \leq k_{\text{max}} \cdot v_{\text{Rd,c}}$

(6.52)

where

- is the area of one perimeter of shear reinforcement around the column [mm²]; Asw
- is the radial spacing of perimeters of shear reinforcement [mm]; S,
- f_{vwd.ef} is the effective design strength of the punching shear reinforcement according to $f_{\text{vwd,ef}} = 250 + 0.25 d \le f_{\text{vwd}}$ [MPa];
- d is the mean of the effective depths in the orthogonal directions [mm];
- is the angle between the shear reinforcement and the plane of the slab; α
- VRd,c according to 6.4.4;
- is the factor, limiting the maximum capacity that can be achieved by application of shear *k*_{max} reinforcement.

NOTE The value of kmax for use in a country may be found in its National Annex. The recommended value is 1,5.

Update default value and default options

Concrete Design Co	de 🗾						
Design Code :	Eurocode2:04						
National Annex :	Italy 💌						
Apply NTC	NTC2018 -						
Apply Special Pro	visions for Seismic Design						
Strut Angle for Shea	r Resistance : 45 Deg						
Effective Creep Rati	o (Phi_ef): 2.14						
Slenderness Limit							
Lambda_lim = 25/	lsqrt(n)						
	Where, n = N_Ed/(Ac*fcd)						
🗹 Beam-Column Joi	nt Design Gamma_rd 1.1						
Strong Column We	ak Beam						
SUM(M_Rc) >	1.3 * SUM(M_Rb)						
Select Ductility Cla	ss						
CD'A' (High Du	ctility)						
OCD'B' (Medium)	Ductility)						
Shear Force for De	sign (Gamma_rd)						
Beam 1.1	Column 1.1 Wall 1.2						
Secondary Seismic E	lement None 🔻 🛄						
Friction Coefficient for Wall Silding : 0.6							
Torsion Design							
Moment Redistributio	on Factor for Beam : 1						
Consider Shear Strength of Concrete for Checking							
Wall Column/Brace Beam							
	OK Close						

2. 優化材料非線性分析的後處理程序

- Strain results are provided for plastic materials, i.e. Tresca, Von Mises, Mohr-Coulomb, Drucker-Prager, and Concrete Damage.
- Damage ratios for compression and tension are provided for the 'Concrete Damage' model.

Results > Tables > Results Tables > Plate/ Solid > Strain(local)/ Strain(Global)

Reaction		TReaction		4 🖸	MIDAS/Gen R	lesult-[Plate Strain	(Local)) ×											
Displacements		P Displacements			Elem Load	Step	Node	Part	Strain-xx	Strain-yy	Strain-xy	Strain-Max	Strain-Min	Angle ([deg])	Max-Shear	Comp. Damage	Tens. Damage	Damag
Truss	,	Truss	•	•	1 LDC1	ni 001	Cent	Top	-9.802e-005	5.819e-005	0.000e+000	5.819e-005	-9.802e-005	90.0000	7.811e-005	6.720e-002	0.000e+000	6.7200
Cable		Cable	•			-		Bot	-9.802e-005	5.819e-005 1.551e-004	0.000e+000 0.000e+000	5.819e-005 1.551e-004	-9.802e-005 -2.612e-004	-90.0000	7.811e-005 2.082e-004	6.720e-002 1.791e-001	0.000e+000 1.197e-007	6.7206
Beam	,	Beam	•		1 LDC1	nl_002	Cent	Bot	-2.612e-004	1.551e-004	0.000e+000	1.551e-004	-2.612e-004	90.0000	2.082e-004	1.791e-001	1.197e-007	1.7916
Plate	Eprce & Stress	Plate	•		1 LDC1	nl_003	Cent	Top	-4.181e-004	2 482e-004 2 482e-004	0.000e+000	2.482e-004 2.482e-004	-4.181e-004	90.0000	3.332e-004 3.332e-004	2.768e-001	1.197e-007	2.768
Plane Stress	Eorce (Local)	Plane Stress	b		1 1001	al 004	Card	Top	-7 988e-004	4.742e-004	0.000e+000	4.742e-004	-7.988e-004	90 0000	6.365e-004	3.963e-001	1 197e-007	3.963
Plane Strain	Force (Clobal)	Plane Strain			1 LDO1	111_004	Cern	Bot	-7.988e-004	4.742e-004	0.000e+000	4.742e-004	-7.988e-004	90.0000	6.365e-004	3.963e-001	1.197e-007	3.963
Avisummetric		Automateia			1 LDC1	nl_005	Cent	Bot	-1 237e-003	7 343e-004	0.000e+000	7.343e-004	-1.237e-003	90.0000	9.856e-004	4.946e-001	1.197e-007	4 946
Axisymmetric	Force (Unit Length)	Axisymmetric			1 LDC1	nl 006	Cent	Тор	-1.708e-003	1.014e-003	0 000e+000	1.014e-003	-1 708e-003	90.0000	1.361e-003	5.690e-001	1.197e-007	5.690
Solid	Stress (Local)	Solid	Force & S	stress	1.000			Top	-1.708e-003 -2.197e-003	1.014e-003 1.305e-003	0.000e+000 0.000e+000	1.014e-003 1.305e-003	-1.708e-003 -2.197e-003	-90.0000	1.361e-003 1.751e-003	5.690e-001 6.247e-001	1.19/e-00/ 1.197e-007	6.247
Wall	Tress (Global)	Wall	Force (Lo	cal)	1 LDC1	nl_007	Cent	Bot	-2 197e-003	1.305e-003	0.000e+000	1.305e-003	-2 197e-003	-90 0000	1.751e-003	6.247e-001	1 197e-007	6.247
Elastic Link	🏆 Strain (Local)	Elastic Link	Force (GI	obal)	1 LDC1	nl_006	Cent	Top	-2.693e-003	1.599e-003	0.000e+000	1 599e-003	-2.693e-003	90 0000	2 146e-003 2 146e-003	6.692e-001 6.692e-001	1.197e-007	6.692
General Link	🏆 Strain (Global)	General Link	😽 Stress (Lo	cal)	1 1001	000	Card	Top	-3.193e-003	1.896e-003	0.000e+000	1.896e-003	-3.193e-003	90.0000	2.545e-003	7.069e-001	1.197e-007	7.069
Vibration Mode Shape		🚹 Vibration Mode Shape	😽 Stress (G	obal)	1 LDC1	m_008	Cent	Bot	-3.193e-003	1.896e-003	0.000e+000	1.896e-003	-3.193e-003	-90.0000	2.545e-003	7.069e-001	1.197e-007	7.069
Buckling Mode Shape		+ Buckling Mode Shape	😽 Strain (Lo	cal)	1 LDC1	nl_010	Cent	Bot	-3.695e-003	2.193e-003	0.000e+000	2.193e-003	-3.695e-003	-90.0000	2.944e-003	7.352e-001	1.197e-007	7.352
Nodal Results of RS	1	Nodal Results of RS	🖳 Strain (G	obal)	1 LDC1	nl 011	Cent	Top	-4.197e-003	2.492e-003	0.000e+000	2.492e-003	-4.197e-003	90.0000	3.344e-003	7.573e-001	1.197e-007	7.573
Story		Story	▶ ·	<u> </u>				Top	-4 197e-003	2 492e-003 2 790e-003	0.000e+000 0.000e+000	2 492e-003 2 790e-003	-4.197e-003 -4.700e-003	-90 0000	3.344e-003 3.745e-003	7.573e-001 7.793e-001	1.19/e-00/ 1.19/e-007	7 57 34
Inelastic Hinge	,	Inelastic Hinge	•		1 LDC1	nl_012	Cent	Bot	-4.700e-003	2.790e-003	0.000e+000	2.790e-003	-4.700e-003	-90.0000	3.745e-003	7.793e-001	1.197e-007	7.793
Time History Analysis	,	Time History Apalysis			1 LDC1	nl_013	Cent	Top	-5.203e-003	3.089e-003	0.000e+000 0.000e+000	3.089e-003	-5.203e-003	90.0000	4.146e-003 4.146e-003	7.996e-001 7.996e-001	1.197e-007	7.996
Heat of Hydration Analysis		Heat of Hydration Analysis			1 1001	ni 014	Cant	Тор	-5 706e-003	3.388e-003	0.000e+000	3.388e-003	-5.706e-003	90 0000	4.547e-003	8 101e-001	1.197e-007	8 101
Trades					1 LDOI	11_014	Con	Bot	-5.706e-003	3.388e-003	0.000e+000	3.388e-003	-5.706e-003	-90.0000	4.547e-003	8.101e-001	1.197e-007	8.101
		Tendon	4		1 LDC1	nl_015	Cent	Bot	-6.209e-003	3.686e-003	0.000e+000	3.686e-003	-6.209e-003	-90.0000	4.948e-003	8.206e-001	1.197e-007	8.206
Composite Section For C.S.		Composite Section For C.S.	•		1 LDC1	nl_016	Cent	Top	-6.713e-003	3.985e-003	0.000e+000	3 985e-003	-6.713e-003	90 0000	5.349e-003	8.311e-001	1.197e-007	8.311
Displacement Participation Factor	'	Displacement Participation Factor	•					Top	-5.713e-003 -7.217e-003	3.985e-003 4.285e-003	0.000e+000 0.000e+000	3.985e-003 4.285e-003	-6.713e-003 -7.217e-003	-90.0000	5.349e-003 5.751e-003	8.311e-001 8.416e-001	1.19/e-00/ 1.19/e-00/	8.416
Initial Element Force		Initial Element Force			1 LDC1	nl_017	Cent	Bot	-7.217e-003	4 285e-003	0.000e+000	4.285e-003	-7.217e-003	-90 0000	5 751e-003	8.416e-001	1 197e-007	8.416
Imperfection		F Imperfection			1 LDC1	nl 018	Cent	Top	-7.722e-003	4.584e-003	0.000e+000	4.584e-003	-7.722e-003	90 0000	6 153e-003	8.521e-001	1.197e-007	8 521

2. 優化混凝土破壞模式分析的後處理程序

Results > Results > Strains > Plate Strains/ Solid Strains

3. 建模精靈自動建立電塔模型

• Tower wizard makes it easy to model the leg / body / arm part of a complex 3D tower structure.

Structure > Wizard > Tower > Tower Leg/ Body/ Arm

4. 優化歷時分析的後處理程序

- The average and envelope load cases for the time-history load cases are generated in the table.
- The displacement and the member force are only supported.

Results > Time History > T.H Results > Time History Load Combination

Name: 01 LOad Case	
 Disply/el/Accel Disply/el/Accel Disply/el/Accel Description : Description : Description : Cod Combination Type © Envelope O Average Selected T.H. Load Cases Defined T.H. Load Cases Cbmin : TH ENV_Use input name Combination Cbmax : TH AVR_Use input name Combination 	The maximum absolute value among the selected load casesThe maximum value among the maximum value of selected load casesThe minimum value among the minimum value of selected load casesThe average value of the maximum value of selected load casesThe average value of the maximum value of selected load casesThe average value of minimum value of selected load casesThe average value of minimum value of selected load cases

midas **Gen**

5. 優化扭轉不規則性檢核表格

- The φp value is added in Torsional Irregularity Check Table as per the Colombia NSR-10 standard.
- The extreme irregular type is added in Remark field.

Øp is the factor regarding the plan irregularity. If the structure has normal torsional irregularity (between 1.2 and 1.4) it must use Øp as 0.9. If the structure has extreme torsional irregularity (more than 1.4), Øp will be 0.8. If the structure is regular, Øp will be 1.0.

← Figura A.3-1 — Irregularidades en planta

select Calculation Method	4 /	MIDAS	5/Gen 🚺	Result-[To	rsional Irregula	arity Check] ×					
Country Code : NSR-10				1 million	Oto a Unicht	Average Value	of Extreme Points	Maxi	mum Value		
Story Drift Method © Drift at the Center of Mass		Load Case	Story	(mm)	(mm)	1.4*Story Drift (mm)	1.2*Story Drift (mm)	Node	Story Drift (mm)	Remark	Phi_p
Max. Drift of Outer Extreme Points	►	DL	5F	15500.00	3500.00	0.0002	0.0001	107	0.0001	Regular	1.0
Max. Drift of All Vertical Elements		DL	4F	12000.00	3500.00	0.0001	0.0000	85	0.0000	Regular	1.0
Max. Drift of All Verocal Elements		DL	3F	8500.00	3500.00	0.0000	0.0000	63	0.0000	Regular	1.0
Story Stiffners Method		DL	2F	5000.00	3500.00	0.0000	0.0000	21	0.0000	Regular	1.0
Contraction and the second sec		DL	1F	0.00	5000.00	0.0000	0.0000	41	0.0000	Regular	1.0
I / Story Drift Ratio		LL	5F	15500.00	3500.00	0.0005	0.0004	107	0.0003	Regular	1.0
Story Shear / Story Drift		LL	4F	12000.00	3500.00	0.0002	0.0002	85	0.0002	Regular	1.0
		LL	3F	8500.00	3500.00	0.0002	0.0002	63	0.0001	Regular	1.0
OK Cancel		LL	2F	5000.00	3500.00	0.0001	0.0001	21	0.0001	Regular	1.0
		LL	1F	0.00	5000.00	0.0002	0.0002	41	0.0001	Regular	1.0
		EX	5F	15500.00	3500.00	2.8645	2.4553	123	2.3180	Regular	1.0
Regular · Story Drift of Maximum Value =		EX	4F	12000.00	3500.00	4.1682	3.5728	101	3.5092	Regular	1.0
< 1.2*Story Drift of Average Value of Extreme		EX	3F	8500.00	3500.00	5.0753	4.3503	70	4.42	Irregular	0.9
Points		EX	2F	5000.00	3500.00	5.7329	4.9139	40	5.3286	Irregular	0.9
		EX	1F	0.00	5000.00	13.9758	11.9793	60	14.1114	Extreme Irregu	0.8
Image I and A Others Drift of Assesses Makes of		EY	5F	15500.00	3500.00	6.5717	5.6328	126	5.1114	Regular	1.0
Irregular : 1.2 Story Drift of Average Value of		EY	4F	12000.00	3500.00	11.2747	9.6641	104	8.7462	Regular	1.0
Extreme Points < Story Drift of Maximum Value		EY	3F	8500.00	3500.00	15.9000	13.6286	82	12.2937	Regular	1.0
=< 1.4*Story Drift of Average Value of Extreme		EY	2F	5000.00	3500.00	23.9264	20.5084	40	18.3609	Regular	1.0
Points		EY	1F	0.00	5000.00	93.3580	80.0211	60	70.8491	Regular	1.0
		WX	5F	15500.00	3500.00	0.0000	0.0000	0	0.0000	Regular	1.0
Extreme Irregular : 1.4*Story Drift of Average		WX	4F	12000.00	3500.00	0.0000	0.0000	0	0.0000	Regular	1.0
Value of Extreme Points < Story Drift of		WX	3F	8500.00	3500.00	0.0000	0.0000	0	0.0000	Regular	1.0
Maximum Value		WX	2F	5000.00	3500.00	0.0000	0.0000	0	0.0000	Regular	1.0
		WX	1F	0.00	5000.00	0.0000	0.0000	0	0.0000	Regular	1.0

midas **Gen**

6. 自動計算不規則結構物的折減係數 (哥倫比亞規範NSR-10)

- Response modification factor R is calculated using three reduction factors to consider the irregularity of structure as per the Colombia NSR-10 standard. (R=φa*φp*φr*R0)
- Height Irregularity (φa), Plan irregularity (φp), Redundancy Check (φr)

Add/Modify Seismic Load Specification	Enter the φp obtained from the Torsio	nal Irregularity table.	* EQUIVALENT SEISMIC LOAD IN ACCORDANCE WITH NSR-10	[UNIT: kN, mm]
Load Case Name : EX Seismic Load Code : NSR-10 Description :	Factor Regarding Irregularity Parameter for Factor		Site Class Effective Peak Acceleration(Aa) Effective Peak Velocity (Av) Site Coefficient et Short Periode (Ea)	: D : 0.15000 : 0.15000
Seismic Load Parameters Design Spectral Response Acceleration Site Class D T Aa 0.15 T G Fa 1.50000	X-Dir. Y-Dir. Height Irregularity (Phi,a) :		Site Coefficient at is Period (Fv) Importance Factor (I) Period Coefficient for Upper Limit (Cu) Fundamental Period Associated with X-dir. (Tx) Fundamental Period Associated with X-dir. (Ty)	: 2,20000 : 1,00 : 1,3540 : 0,6652 : 9,6652
Av 0.15 v g Fv 2.20000 Period Coef. (Cu) 1.35400	Plan Irregularity (Phi,p) : 1 1 Redundancy Check (Phi,r) : 1 1		Basic Ductifity Factor for X-dir. (BXU) Basic Ductifity Factor for Y dir. (ByB) Reduction Factor of Irregularity for X-dir. (Phix) Reduction Factor of Irregularity for Y-dir. (Phix) Ductific Factor of Irregularity for Y-dir. (Phix)	4.00000 4.00000 1.00000 1.00000
Importance Factor (I) 1 Structural Parameters X-Dir. Y-Dir.	Result (Phi) : 1 1		Ductility Factor for X-dir. (Rx) Total Effective Weight For X-dir. Seismic Loads (W Total Effective Weight For Y-dir. Seismic Loads (W	: 4.00000 x) : 24121.271122 y) : 24121.271122
Analytical Period : 0 0 0 0 0.6652 0.6652		e	Scale Factor For X-directional Seismic Loads Scale Factor For Y-directional Seismic Loads	: 1.00 : 0.00
Fundamental Period : 0.6652 0.6652 Basic Ducitility Factor (R0) 4 4 4			Accidental Eccentricity For X-direction (Ex) Accidental Eccentricity For Y-direction (Ey)	: Positive : Positive
Phi: 1 1	Seismir Load	l Profile	Torsional Amplification for Accidental Eccentricit Torsional Amplification for Inherent Eccentricity	y : Do not Consider : Do not Consider
Seismic Load Direction Pactor (Scale Pactor) X-Direction : 1 Y-Direction : 0	Componen ③ X-Dir X-Dir	select Profile	odel For Y-direction Of Model For Y-direction Of Model For Y-direction	: 0.00000 : 628366525.678988 : 0.000000
Acodental Eccentricity X-Direction (Ex): Positive Negative None Y-Direction (Ey): Positive Negative None	× & Y	Dir Overturning Moment	Calculation sh	eet of seismic load
Torsional Amplification Accidental Eccentricity Inherent Eccentricity	Name Roof SF 4F	Weight Elev. Force Force 4617.0952 19000.0 1068.5557 0.0 4851.7904 15500.0 900.75113 0.0 4851.7904 12000.0 682.76828 0.0		
Additional Seismic Loads (Unit:kN,mm) Story Add-X Add-Y Add-RZ Add	3F 2F GL <	48517904 8500.0 470.04531 0.0 2 4948.0946 500.0 259.59234 0.0 - 2 0.0 6.1	Graph of the s	tory force
Seismic Load Profile OK Cancel Apply	File Name:	D: W10. Gen WimidasGen_875_release note WApp		

7. 定義面載重群組

• Loading Area Group can be defined by selecting an area to apply wind pressure.

Structure > Group > B/L/T > Define Loading Area Group

midas **Gen**

8. 定義風壓計算方程式

- Wind load is applied on the space structure according to user-defined function.
- Wind load is applied as the nodal load on the nodes compsing the defined loding area.

Load > Static Load > Lateral > Wind Pressure

Add/Modify/Show Wind Pressure Fur	nction 💌	Wind Pressure		
Function Function Name : Function	_01	Function Wind Press	ure 🔻 🗔	
Coordinate System :	Rectangular 🔻	·		
Equation : 0.5*z*z		Load Case Name :	DL 🔻	
(Example	:: 0.7*Z*Z, cos(TH)+R)	Direction :	Х-Ү 🔻	
Input E	quation for Function	Angle :	0 ≑ [deg]	
Table Show Option Fixed Axis : X, Y	▼ Unit : m, [deg]	Inner Point	0, 0, 0 m	
X Start: 0 End:	5 Increment : 0.5	Scale Factor :	1	
Fix Coordinates X :		Function Name :		
	Calculate	Function_01	▼	
X Y (m) (m)	Z Wind Pressure (m) (kN/m²)	Center Point :	0,0,0 m	
1 0 0 2 0 0	0 0 0 0 0 0 0.125	Selection : 💿 G	roup 💿 Element	
3 0 0	1 0.5	Loading Area Group	Name :	
5 0 0	2 2 2.5 3.125	01	▼	
7 0 0	3 4.5	Element Type		
9 0 0	4 8	Frame	O Planar	
	5 12.5	Elements Defining Lo	ading Area :	
		_	_	THE REAL PROPERTY AND A DECIMAL OF A DECIMAL
1	•	App	ly Close	
Wind Press	ure Function	Function V	Vind Pressure	

9. 優化黏彈性阻尼器設定

• TRC dampers manufactured by Sumitomo Riko Company Limited is added to the viscoelastic material properties.

Boundary > General Link > Seismic Device Properties... > Viscoelastic Damper

Add/Modify Viscoelastic Damper Properties	×	4 element model
Name : TRC Des Input Method Input Name Import Reference DataBase Company : Product Name : Type Number : Input Parameters Input Parameters	scription :	Viscoelastic material properties TRC Damper 4 element model Mount K_2 K_1 C_1 C_2
Material Type : TRC Damper Damper Dimension	Mechanical Properties Dir, : Dx ▼ Freq, : 1 Stiffness Factor : 1 Damping Factor : 1 Reference T(°c) : 20 (-20≤T≤60) OK Cancel Apply	Bilinear of K ₂ P 0.01,K ₂ b b b c b c c c c c c c c c c c c c

0.5

9. 優化黏彈性阻尼器設定

Boundary > General Link > Seismic Device Properties... > Viscoelastic Damper

TRC Damper (4 element model)

: Total Components (K1(Maxwell) + K2(Voigt) + C1(Maxwell) + C2(Voigt)) + Mount

Compression with other products

- Verification model

Mass = 5102.04 N/g Elastic Stiffness = 10000 N/m Undamped System Mounting Stiffness = 1000000 N/m

- Compression of historical loop

9. 優化黏彈性阻尼器設定

Boundary > General Link > Seismic Device Properties... > Viscoelastic Damper

TRC Damper (4 element model)

: Total Components (K1(Maxwell) + K2(Voigt) + C1(Maxwell) + C2(Voigt)) + Mount

Compression with other products(Historical loop)

MIDAS

10. 新增地震能量消散圖

• Print out energy results graph for isolator and vibration control device in the nonlinear time history analysis.

10. 新增地震能量消散圖

Result > T.H Graph/Text > Time History Energy Graph

10. 新增地震能量消散圖

Result > T.H Graph/Text > Time History Energy Graph

ructure Energy Gr	aph 🔻	J	
ime History Energ	y Graph Select		
Dissipated I 🔽 🔽 Dissipated I	nelastic Energy <mark>(</mark> Eh) nge]		
🔽 Kinetic Ener	gy (Ek)		
🔽 Elastic Strai	n Energy (Es)		
🔽 Damping En	ergy (Ed)		
 Ø Maxwell Dar [Oil Damper] Ø Velocity Dep [Viscous Viscous V	mper Energy (Em)] pendent Device Energy (Ev) scoelastic Damper]		
🔽 Strain Depe	ndent Device Energy (Et)		
[Elas. + Inel	l.][Steel Hyst. Isolator]		
🚺 Isolator Dev	vice Energy (Eo)		
Plastic Strain [Plastic Mate	n Energy (Ep) erial (Plate)]		
🔽 🔽 Input Energ	iy (Ei)		
ype of Display			
Cumulative Va	lue Type		
O Value	Percentage		
ime History Load (Case		
	•		
isplay Options			
🔘 No Fill	Solid Fill		
Per	centage Text Result		-

	extresult of the each energy ratio		
🚰 MIDAS	5/Text Editor - [App4_Time history analysis.spf]		
🚰 File	Edit View Window Help		
🗋 🖆	◼ ♣ , ☵ ೫ ๒ ඬ 睅 ぬ Ⴥ ≌ ≅ 睅 ㅅ % %	🎋 🛛 a-b 🥻	ヽ_+
00001 00002	TIME HISTORY ANALYSIS ENERGY RESULT PERCENTATE ; TIME HIST	ORY LOADCA	4SE NO. = 1
00003 00004			
00005 00006 00007 00008	Energy Graph		Percentage (%)
00009 00010	(1) Dissipated Inelastic Energy [Inealstic Hinge]	Eh	9.196
00011 00012	(2) Kinetic Energy	Ek	6.503
00013 00014	(3) Elastic Strain Energy	Es	0.237
00015	(4) Damping Energy	Ed	37.396
00018	(5) Maxwell Damper Energy [Oil Damper]	Em	9.149
00020 00021	(6) Velocity Dependent Device Energy	Ev	0.000
00022 00023	(7) Strain Dependent Device [Steel Hyst. Isolator]	Et	6.959
00024 00025	(8) Isolator Device Energy	Eo	30.559
00026 00027	(9) Plastic Strain Energy [Plastic Matrial (Plate)]	Ep	0.000
00028 00029 00030 00031 00032	(10) Input Energy Error (Input Energy[Ei] - Energy Sum[(1)~(9)])	Ei +++++++	100.000 ••••••••••••••••••••••••••••••••
00033			I I

Taxt result of the each operation

10. 新增地震能量消散圖

Result > T.H Graph/Text > Time History Energy Graph

midas **Gen**

11.多線性彈簧性質與GTS NX的轉換介面

- Reactions from Point Spring Support can be exported to GTS NX.
- Force-displacement results of soil can be imported from GTS NX into midas Gen, and the input data of the multi-linear Point Spring Supports are updated.

File > Export > Nodal Results for GTS

File > Import > Nodal Results for GTS

midas **Gen**

12. 可定義彈簧或線性連接的力與位移多線性關係

• Multiple linear type elastic springs are defined as functions without limitation.

13. 侧推分析可考慮非線性彈性連接

- Nonlinear behavior of the elastic links, i.e. comp.-only, tens.-only, multi-linear can be taken into account in the pushover analysis.
- Link forces imported from static analysis or construction stage analysis cannot be specified as initial loads for pushover analysis.

Pushover > Elements > Pushover Global Control

Pushover Global Control Geometric Nonlinearity Type Large Displacements Initial Load Perform Nonlinear Static Analysis for Initial Load Import Static Analysis / Construction Stage Analysis Results 	Nonlinear Analysis Option Permit Convergence Failure Max. Number of Substeps : 10 Convergence Criteria Volsplacement Norm Force Norm Convergence Criteria Senergy Norm Analysis Stop Shear Component Yield Ve Beam/Column		Bi-linear Elastic Links representing
Pushover Hinge Data Option	Axial Component Collapse/Buddi Beam/Column Uplifting Uplifting Colla Point Spring Support & Elastic Link : Non Spring Support & Elastic Link : Non Spring Support & Elastic Link : Non	upport : CompOnly, TensOnly, Multilinear Type nonlinear properties defined in Point Spring r pushover analysis as linear spring support for pushover analysis ase when pushover hinges are assigned to Point aport, the pushover hinge properties will be used for analysis.	soil resistance
Image Properties to Member only for Moment-Rotation Beam/Column Default Stiffness Reduction Ratio of Skeleton Curve Trilinear / Slip Trilinear Type Image: Symmetric for the symmetric	rence Location only for Distributed Hinge end alc. Yield Surface of Beam considering B.	ompOnly, TensOnly, Multilinear Type nonlinear properties defined in Elastic Link for analysis as linear Elastic Link for pushover analysis OK Cancel	
Bilinear / Slip Bilinear Type Symmetric (+) (-) a1 0.05 0.05 Remove Pushover Global Control Misc	OK Cancel		
Pushover Global C	ontrol		Pushover Analysis for the underground structure

14. Tekla Structure 2018 轉換介面

 Tekla Structures interface is a tool provided to speed up the entire modeling, analysis, and design procedure of a structure by data transfer with midas Gen. Data transfer is limited to structural elements. Tekla Structure interface enables us to transfer a Tekla model data to midas Gen, and delivery back to the Tekla model file. midas Gen text file (*.mgt) is used for the roundtrip.

15. 新增鋼筋性質資料庫 (SS560:2010)

• Reinforcement as per Singapore SS560:2010 is added for the design.

Tools > Setting > Preferences

Design > Design > RC Design > Design Criteria for Rebar

1. SRC柱設計 (AISC-LRFD 10M)

• The automatic design / check of the SRC column is performed as per AISC-LRFD 10M.

WorkBar 👻 👎	Start Page Member Member List	Drawing Quantity	▼ X	T
Add new member	General		PM Interaction Curve	1
System SRC 🔻	Member Name SC01	Double click to Zoom.	Double.clic(kip) Zoom	
Type Column 💌	Apply this Member to Dwg & Report 🔻		0=45,93° 1500	
Name	Material		1250	
Option Add	Concrete 3.481 v ksi		1126 (2107,1279)	
Keep Sect. & Bar Data	Main Bar 58.015 💌 ksi	8,25	750	
RC Steel SRC Aluminum Reinforce	Hoop Bar 58.015 Visi	51 W	500 eb=14.5	
G SRC Design Procedure	H-Beam A36 💌		250	
E Design Option	Stud A36 🗸	8.07	0 9 1100,113 M (kib.in)	
SRC : AISC-LRFD 10M			-250	
Rebar Code : ASTM	Snape Rectangular Circle		-500	
Material DB : ASTM09			-750	
Section Code : AISC10(US)	Section	19.685	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Preference	Width 19.69 in	T T		
Composite Beam	Height 19.69 in	Rebar	Calculation Result	
□	Length(x) 11.48 ft	MAIN BAR	Check Item Direction X Direction Y Remark	
	Length(y) 11.48 ft	Layer No - Row - Main Dc	REQUIREMENT FOR MATERIAL	
	Kx 1.00	Layer 1 4 - 2 - #8 1.57 in	Fck,min (ksi) 3.481 3.046 OK(0.875)	
CFT Column	Ку 1.00	Max.Num Maximum Rebar Layout (Layer 1) : 16-4-#8	Fck,max (ksi) 3.481 10.15 OK(0.343)	
	H-Beam	HOOP BAR	Fy,max (ksi) 36.00 76.14 OK(0.473)	
	Shape H Section 🔻	End #3 @ 5.91 in Use User Input	Fyr,max (ksi) 58.02 76.14 OK(0.762)	J. Drawing
		Center #3 @ 11.81 in	MOMENT CAPACITY	↓ Diawing
		Main Bar Arrangement		
	Force & Moment	Orner (Auto Calc)	ps SRC COLUMN I	IST
	Axial 100.00 kip	Corner (by User : 3.07 in		
	Moment(x) 80.00 kip.in		ØPn (kip) NAME SECTION N	AME SECTION
	Moment(y) 80.00 kip.in	Check Load Transfer C Schered Free house hous	ØMn (kip.in)	SC02
	Shear(x) 50.00 kip	External force to steel only External force to concrete only External force to Both materials concurrently.	Pu/øPn	
	Shear(y) 60.00 kip	Headed Stud	Mu/øMn	
	Coefficient / Factor	Type M19 💌	smax (in)	
	Cmx 0.600	Space 11.81 in No. (Web) 1 EA	(19.69x19.69) (19.6	i9x19.69)
	Cmy 0.600	Length 3.15 in No. (Flg.) 1 EA	s/sinax STEEL SECT. W8X40 STEE	EL SECT. W8X40
	βd [*] 0.600		d/m at Lbar (kin Lloop dup) #2014 64	IN BAR 12-#8
		Spacing Limit of Main Rebar	(No st) (Kip) HOOP (MD) #3(97181 HOO HOOP (END) #3(95906 HOO	P (MID) #3@11.81
	Load Combinations (1)	© Do not splice	STUD (WEB) STU	D (WEB)
	Design(F4) Check(F5) Report	Apply(F3)	STUD (FLG.) STU	D (FLG.)

2. CFT柱設計 (AISC-LRFD 10M)

• The automatic design / check of the CFT column is performed as per AISC-LRFD 10M.

NorkBar 🔻 ₽	Start Page Member Member List	Drawing Quantity	↓ Summary report
Add new member	General		1 General Information
System SRC -	Member Name SC01	Double click to Zoom	Design Code Unit System
Type CFT Column	Apply this Member to Dwg & Report 🔻		AGCLR/D10M N, mn 2. Material & Section
Name	Material		Concrete Material Steel Material Steel Shape 24.000/Pa A38.(F. = 2460/Pa) H9516X.375
Option Add	Steel A36 🔻	0.375	3. Length
* Keep Sect. & Bar Data	Concrete 3.481 💌 ksi		Les Ly Ka Kg Lgg 3.500m 3.500m 1.000 1.000 0.000m
RC Steel SRC Aluminum Reinforce	Section		Force Ps Mu Mu Vu V
SRC Design Procedure	Shape Pipe 🔻		4450N 5.649N/m 9.039N/m 2222N 2222N
	✓ Use DB HSS16X.375 ✓		
SRC : AISC-LRFD 10M	D 16.00 in		
Material DB + ASTM09	t 0.38 in	16	<u>8.35</u>
Section Code : AISC10(US)	E		
Steel Option		Calculation Result	
Preference	-	Check Item Direction X Direction Y Remark	
Composite Beam		REQUIREMENT FOR MATERIAL	
Column	Force	Fck,min (ksi) 3.481 3.046 OK(0.875)	5. Check Limitation
E CFT Column (1)	Axial 100.00 kip	Fck,max (ksi) 3.481 10.15 OK(0.343)	Lower Link of Conc. (r _{ann}) 24.00 21.00 0.875
SC01	Moment (x) 50.00 kip.in	Fy,max (ksi) 36.00 76.14 OK(0.473)	Upper Link of Steel (r) 240 70.00 0.343 Upper Link of Steel (r) 240
	Moment (y) 80.00 kip.in	As,min(%) 8.552 1.000 OK(0.117)	Steel Section Area Ratio (A ₄ / A ₄) 0.0005 9. Check Flexural Strength About Major Axis
	Shear (x) 50.00 kip	WIDTH-THICKNESS RATIO	(1) Check Flexural Strength About Minor Axis • $K = f_{\rm c} h^2 = 3.601 {\rm kM}$
	Shear (y) 50.00 kip	BTR OK(0.184) Compact	
	Load Combinations (1)	AXIAL CAPACITY	Detail report \rightarrow • $K_s = F_y \frac{1}{2} t = 43/kN$
	length	øPn (kip) 881 ø=0.750	 Param = (0.0260K_c + 2K_s)² + 0.857K_c K_s
	11.48 ft	Pu/øPn OK(0.114)	• $\theta = \frac{0.0260 K_{o} - 2K_{s}}{0.0949 K} + \frac{Param}{0.0949 K} = 2.395 radian$
	11.48 ft	MOMENT CAPACITY	(2) Calculate plastic section modulus
	Ky 1.00	øMn (kip.in) 1759 1759 ø=0.900	$h^3 \sin^3(\theta/2) = 7.017.027 \text{mm}^3$
	Ky * 1.00	Mu/øMn OK(0.028) OK(0.045)	• $Z_{c8} = \frac{6}{1}$ = 7,617,937100
	Lv 0.00 ft	COMBINED RATIO	• $Z_{se} = \frac{d^2 \sin^2(\theta/2)}{e}$ - $Z_{se} = 1,211,124 \text{mm}^3$
		ComRat OK(0.131) Pr/Pc < 0.2	(3) Calculate plastic flexural strength
	Check Load Transfer	SHEAR CAPACITY	
	External force to	øVn,stl (kip) 167 167 ø=0.900 🗸	• $M_{ip} = Z_{eB} + r_y - \frac{2}{2} = 2Z + Riv + m$
	CET member extends to		(4) Calculate flexural strength about major axis ($ø M_{xx}$)
	One Side	Apply Special Provision Middle Dustliby	 M_{fit} = M_g = 221kN·m Resistance factor for flexure : a = 0.000
			• resistance factor for fiexare . 0 = 0.900 • aM _m = 199kN·m
	Design(F4) Check(F5) Report	Apply(F3)	• M _{at} / ØM _m = 0.0284 < 1.000 → O.K

3. 使用碳纖/玻纖進行構件補強

- Reinforced concrete beam strengthened with FRP / carbon fiber is automatically designed or checked.
- ACI318-08/11/14, ACI318M-08/11/14, NSR-10, and KCI-USD07/12 are supported.

Flow chart of neutral axis calculation

midas Design+

4. 鋁構材之梁/柱設計

- The aluminum beam / column design check is based on the Aluminum Design Manual (ADM1:2005) of AA (Aluminum Associate, USA).
- The automatic check of the aluminum beam / column is performed as per AISC-LRFD 10M.

midas Design+

5. 優化基座板設計之肋板配置

- When the rib plate is inserted in the baseplate and the length of the rib plate is larger than 1/2 of the thickness of the base plate, the rib plate is created on the flange of the column.
- AISC-LRFD 10, ASIC-LRFD 05, Eurocode3:05, KSSC-LSD 16, and KSSC-LSD 09 are supported.

